Forecasting

Load Forecasting Using Machine Learning: Does the Hype Meet Reality?

June 13, 2018

It is easy to stub your toe on the voluminous literature available on machine learning when the question of how to improve your operational forecast is raised by management. A Google search on the topic, “machine learning applied to electricity forecasting” returns over one million hits.

With this much written on the subject, the clear path to improved forecast performance must be to invest in machine learning tools. Before we buy one of these shiny new cars, let’s look under the hood to see what we are buying. Download our latest white paper to learn more.

By Dr. Frank A. Monforte


Director of Forecasting Solutions


Dr. Frank A. Monforte is Director of Forecasting Solutions at Itron, where he is an internationally recognized authority in the areas of real-time load and generation forecasting, retail portfolio forecasting, and long-term energy forecasting. Dr. Monforte’s real-time forecasting expertise includes authoring the load forecasting models used to support real-time system operations for the North American system operators, the California ISO, the New York ISO, the Midwest ISO, ERCOT, the IESO, and the Australian system operators AEMO and Western Power. Recent efforts include authoring embedded solar, solar plant, and wind farm generation forecast models used to support real-time operations at the California ISO. Dr. Monforte founded the annual ISO/TSO Forecasting Summit that brings together ISO/TSO forecasters from around the world to discuss forecasting challenges unique to their organizations. He directs the implementation of Itron’s Retail Forecasting System, including efforts for energy retailers operating in the United Kingdom, Netherlands, France, Belgium, Italy, Australia, and the U.S. These systems produce energy forecasts for retail portfolios of interval metered and non-interval metered customers. The forecast models he has developed support forecasting of power, gas and heat demand and forecasting of wind, solar, landfill gas, and mine gas generation. Dr. Monforte presides over the annual Itron European Energy Forecasting Group meeting that brings together European Energy Forecasters for an open exchange of ideas and solutions. Dr. Monforte directed the development of Itron’s Statistically Adjusted End-Use Forecasting model and supporting data. He founded the Energy Forecasting Group, which directs primary research in the area of long-run end-use forecasting. Recent efforts include designing economic indices that provide long-run forecast stability during periods of economic uncertainty. Email Frank at frank.monforte@itron.com, or click here to connect on LinkedIn.


Region Selector Select a region and country for the best experience.